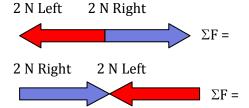
Name:	Date:	Period:

Equilibrium


 A ball sits at rest on a 	a tahle
--	---------

- Draw a free body diagram for the ball.

Because the ball is at rest, we know _______

The Equilibrium Rule ($\Sigma F = 0$)

- The ______is the combination of all the forces acting on an object
- If all of the forces on an object ______, the net force is equal to zero.
- $\bullet\,$ If the net force on the object is equal to zero, the object is in

- These objects are in _____equilibrium
- No change in the objects' ______will occur
- If an object is at rest, it is in _____equilibrium
- To change the object's motion, an _____force must be applied.

	1 N Right 2 N Left $\Sigma F =$
	1 N Left 2 N Right $\Sigma F =$
	1 N Right $ \begin{array}{c} 2 \text{ N Right} \\ \Sigma F = \end{array} $
	Once in motion, the ball will continue at a
	If an object is moving at a constant velocity, it is in equilibrium
	• The object will continue moving at a constant velocity until an
	force acts on it.
<u> </u>	

Draw the forces acting on the crate in each situation.

A crate of apples exerts a force of 50 N on the floor.

- 1. What is the support force provided by the floor?
- 2. What type of equilibrium is the crate in?

The crate is pushed and begins to move.

3. What type of force is provided to get the crate to move? _____

The crate continues moving at a constant velocity.

- 4. If the applied force is equal to 35 N, what is the force of friction?
- 5. What type of equilibrium is the crate in? _____