ACCELERATION PRACTICE PROBLEMS

Acceleration $=\frac{\text { Final Velocity- Initial Velocity }}{\text { time }}$

YOU MUST SHOW YOUR WORK.

You can use a calculator but you must show all of the steps involved in doing the problem.

SHORT ANSWER

1. Does the speedometer of a car read average speed or instantaneous speed? How do you know?
2. If the speedometer of your car reads a constant speed of $40 \mathrm{~km} / \mathrm{hr}$, can you say 100% for sure that the car has a constant velocity? Explain your answer.
3. What is the acceleration of a car that travels in a straight line at a constant speed?
4. Describe a situation in which you can accelerate even though your speed doesn't change.

CALCULATIONS: Using the given information, calculate for the unknown variable. SHOW YOUR WORK! READ CAREFULLY!
5. $\mathrm{v}_{\mathrm{i}}: 0 \mathrm{~km} / \mathrm{hr}$
$\mathrm{V}_{\mathrm{f}}: \mathbf{2 4} \mathrm{km} / \mathrm{hr}$
$t=3$
$a=$?

A: $4 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$
\bigcirc
B: $8 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$
C: $12 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$
6. $\mathrm{v}_{\mathrm{i}}: 0 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\mathrm{f}}: 35 \mathrm{~m} / \mathrm{s}$
$t=5 \mathrm{~s}$.
$a=$?
A: $7 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
B: $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
C: $105 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

7. A car accelerates from a standstill to $60 \mathrm{~km} / \mathrm{hr}$ in 10 seconds. What is its acceleration?

O A: $6 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$
B: $9 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$
C: $15 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$

8. A train is accelerating at a rate of $2.0 \mathrm{~km} / \mathrm{hr} / \mathrm{s}$. If the initial velocity is $20 \mathrm{~km} / \mathrm{hr}$, what is the velocity after 30 s ?

C A: $40 \mathrm{~km} / \mathrm{hr}$
B: $80 \mathrm{~km} / \mathrm{hr}$
C: $120 \mathrm{~km} / \mathrm{hr}$
9. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its speed is $4 \mathrm{~m} / \mathrm{s}$. But 3 seconds later, at the bottom of the slope, its speed is $22 \mathrm{~m} / \mathrm{s}$. What is its average acceleration?
10. A cyclist accelerates from $0 \mathrm{~m} / \mathrm{s}$ to $8 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What is his acceleration? Is this acceleration higher than that of a car which accelerates from 0 to $30 \mathrm{~m} / \mathrm{s}$ in 8 seconds?
11. You are traveling in a car that is moving at a velocity of $20 \mathrm{~m} / \mathrm{s}$. Suddenly, a car 10 meters in front of you slams on it's brakes. At that moment, you also slam on your brakes and slow to $5 \mathrm{~m} / \mathrm{s}$. Calculate the acceleration if it took 2 seconds to slow your car down.
12. A ball is dropped from the top of a building. After 2 seconds, its velocity is measured to be $19.6 \mathrm{~m} / \mathrm{s}$. Calculate the acceleration for the dropped ball.
13. If a Ferrari, with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$, accelerates at a rate of $50 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3 seconds, what will its final velocity be?

