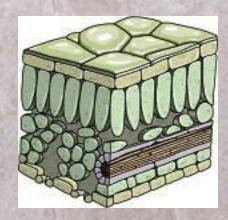
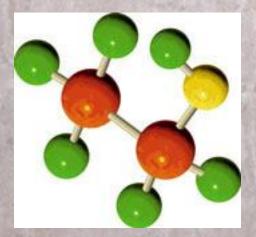
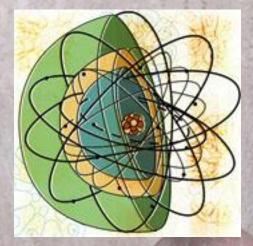

Models

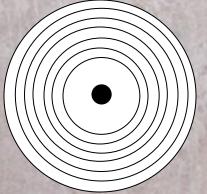
• Atoms are so small that the number of them in a baseball is roughly equal to the number of <u>Ping-</u> <u>Pong</u> balls that could fit inside a hollow sphere as big as the <u>Earth</u>.



in




Because atoms are so small, it is difficult to create **physical models** of what atoms actually look like.


• Instead, scientists create <u>conceptual models</u> that are used to explain the ways atoms interact.

• One useful conceptual model of the atom is **Bohr's planetary** atomic model.

• This model consists of a central <u>nucleus</u> surrounded by electrons traveling in certain <u>energy levels</u>, much like the planets circling the sun.

• There are <u>seven</u> different energy levels, each represented by a <u>period</u> (horizontal row) on the periodic table.

• In the Bohr model, each <u>energy level</u> can only hold a <u>maximum</u> certain number of electrons, just like each period can only hold a certain number of <u>elements</u>.

Period 1	T + Group 1 Group 2	Aroup 2																				Group 13	Group 14		Group 16	Group 17	eH 2 Group 18
Period 2	3 4 Li B	4										3	4	s		-	×	<u>_</u>	2	ΞI	12	5 B	6 C	7 N	8 O	9 F	10 Ne
Period 3	11 1 Na M	2										Group	Group		Group		Group	Group	Group	Group 1	Group	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
Period 4	19 2											21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Feriou 4	KC	a										Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Period 5	37 3	8										39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb S	sr										Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Period 6	55 5	6 57	58 5	9 60	61	62 6	3 6	4 65	66 67	7 6.8	69 70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs B	la La	CeF	PrNo	Pm	Sm E	u G	dTb	DyH) Er	Tm Yb	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Period 7	87 8	8 89	90 9	1 97	93	94 9	5 9	5 97	98 99	100	101107	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr R	a Ad	ThP	a U	Np	PuA	mCr	n Bk	CfEs	s Fm	Md No	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo

Bohr Model

Period	Number of Elements	Energy Level	Maximum Number of Electrons
1			read the
2	Jun Maria		
3		A state	
4			Or .
5			
6			(III)
7			

Period	Number of Elements	Energy Level	Maximum Number of Electrons
1	2		Personal Line
2	8		the set as
3	8		
4	18		O.
5	18		
6	32		CT-
7	32		

Period	Number of Elements	Energy Level	Maximum Number of Electrons
1	2	1	Personal Line
2	8	2	the set was
3	8	3	
4	18	4	O.
5	18	5	
6	32	6	and the
7	32	7	

Period	Number of Elements	Energy Level	Maximum Number of Electrons
1	2	1	2
2	8	2	8
3	8	3	8
4	18	4	18
5	18	5	18
6	32	6	32
7	32	7	32

• Draw Bohr Models for the following atoms: **O**Lithium **O**Boron **O**Nitrogen **O**Neon **O** Sodium **O**Carbon • Remember to include the correct number of electrons in each energy level!

Lithium

Boron

Neon

Sodium

Carbon

The <u>number</u> of and <u>arrangement</u> of the electrons significantly affect chemical properties.
Specifically, it is the <u>valance</u> (outermost) electrons that affect how an atom will interact with other atoms.

- Atoms are most stable when they have <u>full</u> valance shells.
- The elements that naturally have full valence shells are the **noble gases**
- Other elements will gain, lose, or share electrons during chemical reactions in order to get this **noble gas configuration**.

Lithium

Boron

Neon

Sodium

Carbon

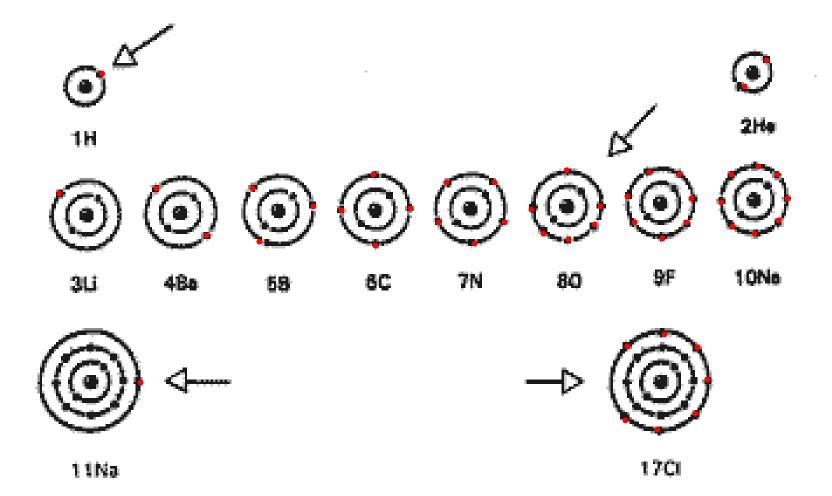
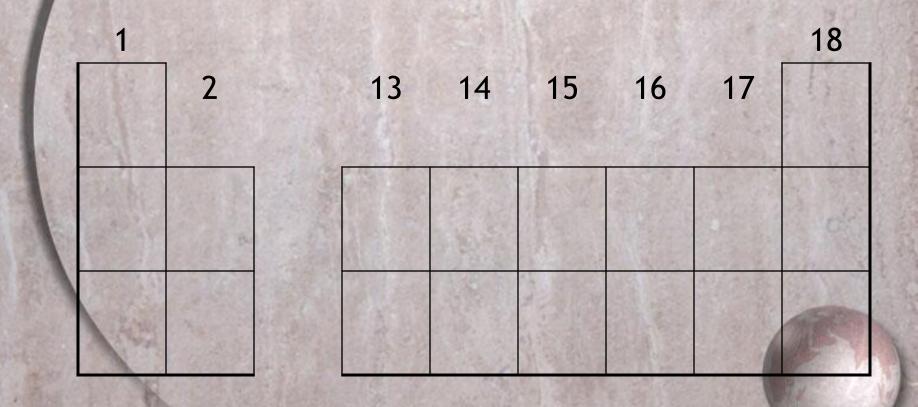
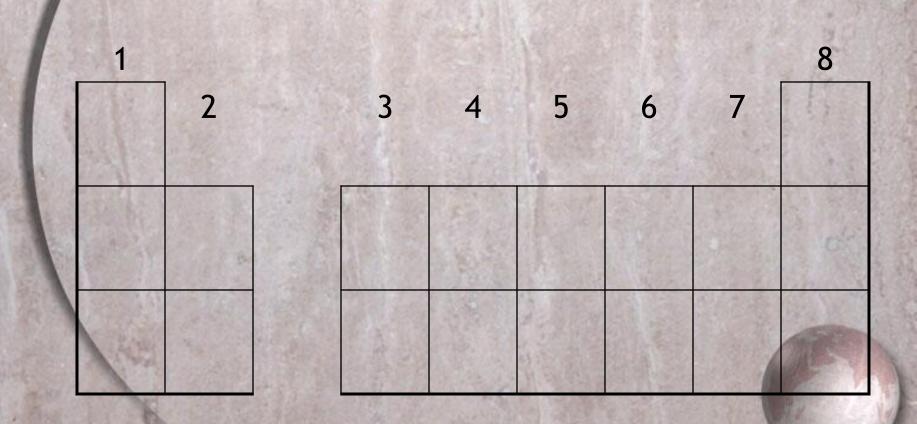
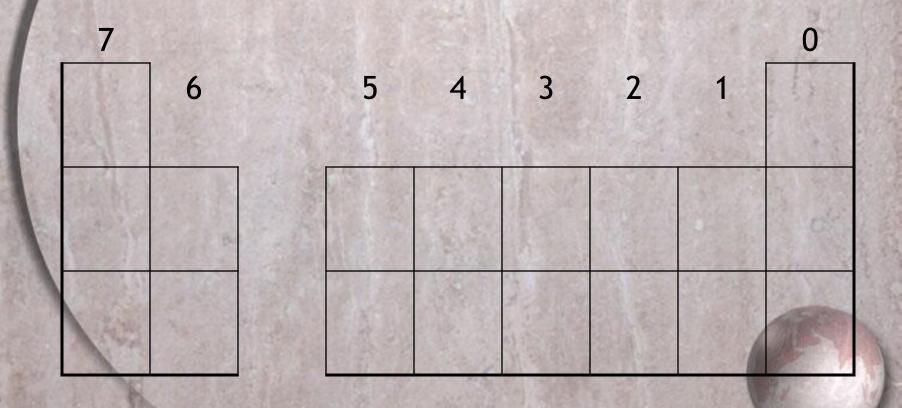



Fig.3.5 Iconic Models of Elements in the Periodic Table


 Notice, elements in the same group (vertical column) on the periodic table will have the same number of valance electrons.

- The group the element is found in on the periodic table can also help us **predict** how many electrons the element will gain, lose, or share during a chemical **reaction**.
- To determine usual charges, we decide if it is easier for an atom to gain the required electrons <u>(negative charge)</u> or lose the required **ELECTRONS** (positive charge).

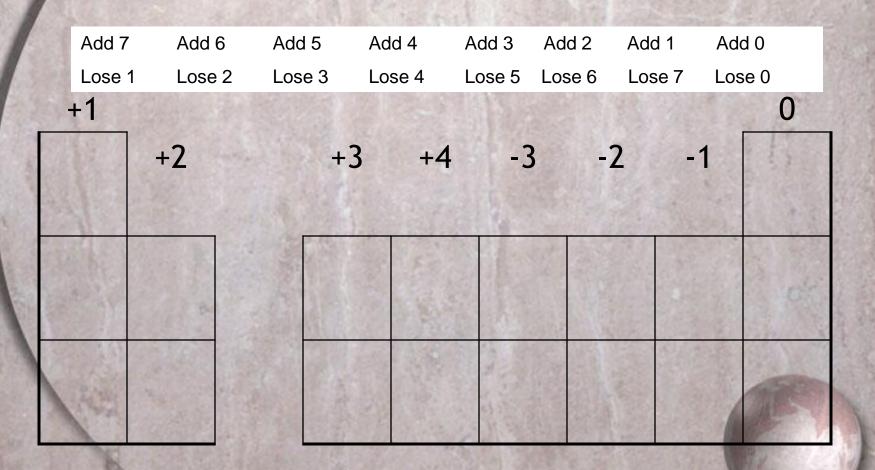
Group Number



Valence Electrons

	and the second second second			and the second se	a share of the state	and the second second		a destruction of the second second
Group	1	2	13	14	15	16	17	18
Valence	1	2	3	1	5	6	7	8
Electrons	I		5	4	5	0		0
Add								
Electrons								
Lose								
Electrons								
Usual								
Charge								

Electrons Gained to Achieve Nobel Gas Configuration (Add __ Electrons to be stable)


		CONTRACTOR OF A		The second second	and the start of the	C M. D. Carlos and	and the second second second
1	2	13	14	15	16	17	18
1	2	2	Δ	5	6	7	8
1		5	4	5	0		0
\mathbf{v}	v	v	1	2	2	1	0
Λ	Λ		4	5		I	0
	1 1 X	1 2	1 2 3	1 2 3 4	1 2 3 4 5	1 2 3 4 5 6	1 2 3 4 5 6 7

Electrons Lost to Achieve Nobel Gas Configuration (Lose __ Electrons to be stable)

	and the second second second					and the second second		a dealer to get a start of a se	
Group	1	2	13	14	15	16	17	18	
Valence	1	2	3	4	5	6	7	8	
Electrons	1		5	-	5	0	/	0	
Add Electrons	Х	X	X	Λ	3	2	1	0	
Electrons	Λ	Λ		4	5	Z	I	U	
Lose	1	2	3	1	X	X	X	0	
Electrons	1		3	4		Λ	Λ	U	
Usual									
Charge									

Which would be easier? (Usual Charge)

				The second second	and the second second		a share to share a share to sh
1	2	13	14	15	16	17	18
1	2	3	1	5	6	7	8
1	2	5	-	5		/	0
\mathbf{v}	\mathbf{v}	v	1	2	2	1	0
Λ	Λ	Λ	4	5	Z	I	U
1	C	2	1	\mathbf{v}	\mathbf{v}	\mathbf{v}	0
1	Ζ	3	4	Λ	Λ	Λ	U
⊥1	⊥ <u></u> 2	⊥2	-4	2	2	1	0
ΤT	$\top \angle$	+3	+4	-3	-2	-1	U
	1 1 X 1 +1	1 2 X X 1 2	1 2 3 X X X 1 2 3	1 2 3 4 X X X 4 1 2 3 4 -4 -4 -4	1 2 3 4 5 X X X 4 3 1 2 3 4 X -4 -4 -4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The valence electrons are the only electrons that affect the <u>chemical</u> <u>properties</u> of an atom.

• A more simple model, the <u>Lewis Dot</u> <u>Structure</u>, includes only these electrons.

Lithium

Boron

Neon

Sodium

Carbon