Collisions

- In collisions momentum is <u>conserved</u> because all of the forces acting are <u>internal</u> forces.
- **Remember:** According to the Law of Conservation of Momentum, an <u>outside</u> force is required to change the momentum of a system.
- Net momentum before collision = <u>Net</u> <u>momentum after collision</u>

 $p_{before} = 5 + 0 = 5$

 $p_{after} = 0 + 5 = 5$

 $p_{before} = p_{after}$

$$p_{before} = 5 + -5 = 0$$

$$p_{after} = -5 + 5 = 0$$

 $p_{before} = p_{after}$

 $p_{before} = 5 + 1 = 6$

 $p_{after} = 1 + 5 = 6$

 $p_{before} = p_{after}$

- Each of these examples demonstrates a collision where the objects bounced off each other without any damage.
- These are <u>Elastic collisions</u> when colliding objects rebound perfectly without heat or damage
- More common in the "real world" are <u>Inelastic</u> <u>collisions</u> - when colliding objects rebound with heat or damage occurring

In a perfectly inelastic collision, both objects <u>stick</u> <u>together.</u>

 $2 \times 5 = 1 \times 10$

If both of these objects have the <u>same initial</u> <u>momentum</u>, they stop dead in their tracks.

What would happen if the truck on the right had more initial momentum?

Collisions

The Law of Conservation of Momentum applies to both types of collisions.

