Newton's 3rd Law of Motion Action and Reaction Forces How do Newton's Laws of Motion allow us to make predictions and draw conclusions regarding the motion of an object?

The third law of motion in space

- Watch the short video clip regarding Newton's 3rd Law of Motion.
- Based on what you read in chapter 4, write a brief paragraph describing why Newton's 3rd Law of Motion makes it difficult for astronauts to work in outerspace.
- http://www.teachersdomain.org/reso urces/phy03/scl/phys/mfw/asrnt/ind ex.html

Newton's Third Law of Motion Whenever on object exerts a force on a second object, the second of the texerts a force back on the first object.

 These forces are <u>equal</u> in strength and <u>opposite</u> in direction.

Newton's Third Law of Motion • Another familiar way of stating it is:

For every <u>action force</u>, there is an equal and opposite <u>reaction force</u>.

- Neither of these forces can <u>exist</u> without the other.
 - Examples of Newton's Third Law:

 Why don't these forces cancel out?

 Action forces and Reaction forces act on <u>different</u> <u>objects</u>.

ΣF ≠ 0

 $\Sigma F = 0$

m

The effect of se forces on each object depends on the object's <u>mass</u>.

a =

m

• The effect of the set forces on each object depends on the object's <u>mass</u>.

Newton's 3rd Law

 How does Noton's 2nd Law of motion explain why the acceleration will be greater on the cannonball than the cannon?