Name:		Date:	Period:
	Inertia in	Motion	
Recall: All objects have ine	ertia (the resistance to a	change in motion)	
When the object is in motion	n, we refer to the inertia a	as	
The momentum of an object	ct is equal to:		
If the direction of the object	is not important, we can	use:	
Example: 1. A car with a mass of 150	0 kg is traveling west at	60 m/s. What is the car's	momentum?
2. A horse with a mass of 4	00 kg is traveling at 12 n	n/s. What is the horse's n	nomentum?
3. A man with a mass of 90	kg is traveling at 3 m/s.	What is the man's mome	entum?
Law of Conservation of Mome	ntum		
Newton'svelocity of an object remai	ns the same without an out	side force.	tells us that the
Theof			
Therefore			
The momentum of a system	n remains	if	no
external	are p	resent.	

A bullet is shot from a gun. What do we know about the force exerted on the bullet and the gun?
Is the momentum conserved for the bullet? Why or why not?
Is the momentum conserved for the gun? Why or why not?
Is the momentum conserved for the gun-bullet system? Why or why not?
We can calculate the recoil velocity of the gun using the law of conservation of momentum.

A 5 kg fish swimming at 2 m/s swallows an absent minded 1 kg fish swimming toward it at a velocity that brings both fish to a halt immediately after lunch. What is the velocity of the smaller fish before lunch?