\qquad Date: \qquad Period: \qquad

Inertia in Motion

Recall: All objects have inertia (the resistance to a change in motion)
When the object is in motion, we refer to the inertia as \qquad
The momentum of an object is equal to: \qquad

If the direction of the object is not important, we can use: \qquad

Example:

1. A car with a mass of 1500 kg is traveling west at $60 \mathrm{~m} / \mathrm{s}$. What is the car's momentum?
2. A horse with a mass of 400 kg is traveling at $12 \mathrm{~m} / \mathrm{s}$. What is the horse's momentum?
3. A man with a mass of 90 kg is traveling at $3 \mathrm{~m} / \mathrm{s}$. What is the man's momentum?

Law of Conservation of Momentum
Newton's \qquad tells us that the velocity of an object remains the same without an outside force.

The \qquad of the object also remains the same.

Therefore...
The momentum of a system remains \qquad if no
external \qquad are present.

A bullet is shot from a gun. What do we know about the force exerted on the bullet and the gun?

Is the momentum conserved for the bullet? Why or why not?
\qquad
\qquad

Is the momentum conserved for the gun? Why or why not?

Is the momentum conserved for the gun-bullet system? Why or why not?
\qquad
\qquad

We can calculate the recoil velocity of the gun using the law of conservation of momentum.

A 5 kg fish swimming at $2 \mathrm{~m} / \mathrm{s}$ swallows an absent minded 1 kg fish swimming toward it at a velocity that brings both fish to a halt immediately after lunch. What is the velocity of the smaller fish before lunch?

