Data Collection:

Hypothesis: Which activity will produce the most power? Rank the exercises from 1 to 4.1 being the most power, 4 being the least amount of power.

Exercise	Rank
Push-Up	
Stair Climb	
Bicep Curl	
Mass Drag	

Data:

Exercise A: Push-Up

Group Member's Name	Reading on scale in "up" position	Force Applied in Newtons (weight x 4.45)	Distance in "up" position (meters)	Distance in "down" position (meters)	Total Distance Traveled (up - down) $\times 10$	Time (the time it takes to do 10 push- ups)	Work (W=F*d) (Joules)	Power (P=W/t)
(Watts)								

Exercise B: Stair Climb

Group Member's Name	Student Weight	Force Applied in Newtons (weight 4.45)	Height of 1 stairstep (meters)	\# of stairs climbed	Total Distance Traveled Height of 1 step x number of stairs	Time (the time it takes to climb 1 fight of stairs)	Work (W=F*d) (Joules)	Power (P=W/t)

Exercise C: Bicep Curl
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Group } \\ \text { Member's } \\ \text { Name }\end{array} & \begin{array}{c}\text { Weight of the } \\ \text { dumbbell }\end{array} & \begin{array}{c}\text { Force Applied } \\ \text { in Newtons } \\ \text { (weight x 4.45) }\end{array} & \begin{array}{c}\text { Distance for } \\ \text { "start" (down) } \\ \text { position } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Distance in } \\ \text { "finish" (up) } \\ \text { position } \\ \text { (meters) }\end{array} & \begin{array}{c}\text { Total Distance } \\ \text { Traveled } \\ \text { (up - down) } \times 10\end{array} & \begin{array}{c}\text { Time } \\ \text { (the time it takes } \\ \text { to do 10 bicep } \\ \text { curls) }\end{array} & \begin{array}{c}\text { Work (W=F*d) } \\ \text { (Joules) }\end{array} & \text { Power (P=W/t) } \\ \hline & & & & & & & & \\ \text { (Watts) }\end{array}\right]$

Exercise A: Mass Drag

Group Member's Name	Force Applied in Newtons (Always	Total Distance Traveled (always 7 meters)	Time (the time it takes to drag the mass 7 meters)	Work (W=F*d) (Joules)	Power (P=W/t) (Watts)

