In Academic General Science, we will work in Quadrant 1 of the Coordinate Plane Graph

Step 1: Knowing the Axes (/' æksi: z/)

The X-Axis is the horizontal axis.

It is the axis that goes side to side.

The $\underline{Y-A x i s}$ is the vertical axis.

It is the axis that goes up and down.

Step 2: Labeling the Axes (/' æksi: z/)
$\underline{\text { X-Axis: }}$ Place the manipulated (independent) variable on the x-axis with units.

Example:

How does the amount of water affect plant growth?

Step 3: Title your graph

- The correct form for your title is responding (dependent) variable vs. manipulated (independent) variable

Step 4: Determine your Increments

- Equal increments must be used on a given axis.
- The increments do NOT need to be the same for both axes. (See Example 1)
- The increments can, but do NOT need to start at zero (See Example 2)
- Only label the MAJOR gridlines

Example 1: on the x-axis, every block may equal 10 milliliters, but on the y-axis, every block may equal 5 centimeters.

Example 2: on the x-axis, the numbers start at 10 , on the y -axis, the numbers start at 0 .

Step 5: Plot your data points

- Plot each point which is represented by an ordered pair (x, y)

Step 6: Analyze the graph

- If the data is straight, use a ruler and draw a line of best fit and then calculate slope. (See Example 1)
- If the data is curved, then draw a best fit curve that is smooth. (See Example 2)

Example 1

Example 2: This is to just show the curve.

A

Step 7: Calculating Slope (for line graphs)

- Identify two points on the graph where the best fit line crosses through the corner of a grid block
- It does not need to be a data point. Generally, it will not be a data point. (see boxes on graph)
- Label the coordinate points (x, y) with the appropriate numbers (see the numbers in parentheses on graph)
- Use the slope formula to calculate slope: slope $=\left(\mathbf{y}_{2}-\mathbf{y}_{1}\right) /\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)$
- Turn all fractions into decimals by dividing the numerator (top) by the denominator (bottom)
- Label the unit y / x (see calculation example at the bottom of the page)

To calculate the slope of the best fit line:
$\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{(23-6)}{(46-10)}=\frac{17}{36}=.472 \mathrm{~cm} / \mathrm{mL}$

Step 8: Writing the conclusion statement

- Using your line of best fit, determine how the variables are acting
- The manipulated (independent) variable should always increase
- Determine if the responding (dependent) variable is increasing or decreasing as the manipulated (independent) increases
- Your conclusion statement will be written: As the manipulated/independent variable increases, the responding/dependent variable \qquad . (Fill in the blank with increases or decreases based on your graph)

Step 9: Determining the Relationship

- After you have written your conclusion statement, use it to determine your relationship

○ Types of Relationships

- Direct: As manipulated (dependent) variable increases, the responding (dependent) variable increases.
- Inverse: As manipulated (dependent) variable increases, the responding (dependent) variable decreases.
- If your line is straight, it is considered to be direct or inverse linear

Inverse linear

- If your line curves, it is considered to be direct or inverse curvilinear

