Name: \qquad Period: \qquad Date: \qquad
Unit Topic: Structure of Matter

Key Learning: There are patterns that exist because of the physical components of matter. These patterns allow us to predict properties and draw conclusions about interactions.

Unit Essential Question: How do the patterns formed by the physical components of matter allow us to predict properties and draw conclusions about interactions?

$\frac{\text { Concept: Atoms and Subatomic }}{\text { Particles }}$	Concept: Arrangement of the Periodic Table	Concept: Sources of Properties of Compounds

Lesson Essential Questions:	Lesson Essential Questions:	Lesson Essential Questions:
17.3-17.4	17.5	23.3 \& 23.4
How is the number of each		
subatomic particle determined?	How are elements grouped on the periodic table?	How can we determine the types of bonds present in a compound?
How did the model of the atom evolve over time?	$\mathbf{1 8 . 1}$ \& $\mathbf{1 8 . 4}$ How can the periodic table help us draw models for atoms?	Which properties can we predict based on the types of bonds in a compound?

Vocabulary:	Vocabulary:	Vocabulary:
element atom subatomic particle proton neutron electron nucleus atomic number mass number isotope energy levels	metals nonmetals metalloids group period valence electron ion	compound chemical bonds octet of electrons covalent bond ionic bond metallic bond molecule ionic crystal

Objectives:
In order to demonstrate one's competence in this area, the student will be able to:
Section 1: Atoms and Subatomic Particles

1. Define all vocabulary terms listed on the student learning map.
2. State the location, relative mass, charge, and importance of an electron, proton, and neutron.
3. Determine the number of protons, neutrons, and electrons in an atom, ion, or isotope.
4. Determine how the addition of certain subatomic particles would change an atom.
5. Write nuclear symbols and hyphenated notations for any atom, ion, or isotope.
6. Discuss the experimental evidence that led to each atomic model.

Secti0on 2: Arrangement of the Periodic Table

1. Define all vocabulary terms listed on the student learning map.
2. Draw a Bohr model of any of the first 18 elements.
3. Identify the number of valence electrons based on a Bohr model or location on the periodic table.
4. Draw a Lewis dot structure for any main group element.
5. Predict the common charge of an ion based on a Bohr model, Lewis dot structure or location on the periodic table.
6. Predict the properties of main group elements based on their location on the periodic table.

Section 3: Sources of Properties of Compounds

1. Define all vocabulary terms listed on the student learning map.
2. Determine the type of bond formed between 2 elements based on the location of elements on the periodic table.
3. Use Lewis dot structures to represent ionic and covalent compounds.
4. Predict general properties of compounds based on the type of bond.

Subatomic particle	Charge $(+,-$, $0)$	Location (in nucleus or outside nucleus)	Relative mass $(0,1)$	Significance
proton				
neutron				
electron				

1. What do isotopes have in common?
\qquad
2. What 2 things are different between isotopes? \qquad \&
3. If you know the atomic number, what, if anything, could you correctly predict? \qquad \&
4. If you know the number of protons, what, if anything, could you correctly predict? \qquad
\& \qquad
5. The number of \qquad $+$ \qquad equals the mass number of an atom
Complete each statement by circling the correct choice.
6. In the nuclear symbol, the mass number is the (top / bottom) number
7. In the nuclear symbol, the atomic number is the (top / bottom) number.
8. The number of protons is equal to the (mass / atomic) number.
9. The number of (neutrons / electrons) is equal to the mass number minus the protons.
10. In a neutral atom, the number of electrons is equal to the number of (protons / neutrons).
11. The hyphenated notation is the element's name followed by a dash and the (mass / atomic) number.

Complete the table for the neutral atoms

hyphenated notation	Complete nuclear symbol	atomic number	mass number	\# of protons	\# of neutrons	\# of electrons
12	162 76 OS					
13				34	33	
14	indium -122					

1. Identify the atomic model by name and describe the scientific evidence that was used to develop it.

2. Lightly shade the 8 metalloids
3. Circle the symbols of the 16 nonmetals
4. Place an x in the box of the 11 gases
5. Write the common charges of ions on the line above each main group $(1,2,13,14,15,16,17,18)$
6. Write the number of valence electrons on the line below each main group ($1,2,13,14,15,16,17,18$)

Answer the questions related to the periodic table:
7. A horizontal row on the periodic table is called a \qquad
8. A vertical column on the periodic table is called a \qquad
9. On the modern periodic table elements are listed by \qquad and grouped
by \qquad .
10. Circle the correct word: Most elements are (metals / nonmetals / metalloids)
11. Circle the correct word: Most are most elements (solids / liquids / gases)
12. Circle the correct word: Most nonmetals are (solids / liquids / gases)

1. Identify 2 general properties for each group listed:
a. Group 1 \qquad
b. Group 2 \qquad
c. Group 17 \qquad
d. Group 18 \qquad

For 2-4 Draw a Bohr model for each element and write the number of valence electrons (ve-) it has next to its name
\qquad 3. magnesium ve- = \qquad 4. sulfur ve- $=$ \qquad

For 5-7 Draw Lewis dot structures for the following elements and write the number of valence electrons (ve-) it has next to its name
5. potassium(K) ve- = \qquad
6. bromine (Br) ve- $=$ \qquad
7. $\operatorname{bismuth}(\mathrm{Bi})$ ve- $=$ \qquad

For 8-13 Write the charge the ion of each element would have:
8. Ga
11. Cs
9. Cl
12. P
10. I
13. Ba

1. Complete the table. There may be ions

hyphenated notation	Complete nuclear symbol	atomic number	mass number	\# of protons	\# of neutrons	\# of electrons
	15 8 O^{-2}					
Sodium -23 ion				32	33	28
ion						

2. Write the nuclear symbol for an atom of fluorine - 19 if a proton were added to it. \qquad
3. Write the nuclear symbol for an atom of fluorine - 19 if an electron were added to it. \qquad
4. Write the nuclear symbol for an atom of fluorine - 19 if a neutron were added to it. \qquad
5. Complete the table

Elements in bond	Location on periodic table	Type of bond
metal		
metal		
nonmetal		
metal		
nonmetal		
nonmetal		

6. Determine the type of bond that would form between the elements
magnesium and fluorine \qquad
oxygen and sodium \qquad
carbon and sulfur \qquad copper and nickel \qquad

Cl and Na \qquad
S and N \qquad
P and K \qquad

Zn and Sn \qquad

1. Determine whether the compound formed between the 2 elements would be soluble in water or and whether it would have a high or low boiling point

Elements in bond	Soluble in water? (Y or N)	High or low melting point?
$\mathrm{Cu} \& \mathrm{Zn}$		
$\mathrm{Br} \& \mathrm{Rb}$		
$\mathrm{O} \& \mathrm{P}$		

Draw Lewis dot structures to show the bond between the elements.
2. Mg \& S
3. $\mathrm{F} \& \mathrm{Cl}$
4. $\mathrm{Ba} \& \mathrm{I}$
5. $\mathrm{N} \& \mathrm{~F}$

Define the terms in your own words
element
atom
subatomic particle
proton
neutron
electron
nucleus
atomic number
mass number
isotope
energy levels
metals
nonmetals
metalloids
group
period
valence electron
compound
chemical bond
octet of electrons
covalent bond
ionic bond
metallic bond
molecule

