Name:	Period:	Date:

Unit Topic: Structure of Matter

<u>Key Learning</u>: There are patterns that exist because of the physical components of matter. These patterns allow us to predict properties and draw conclusions about interactions.

<u>Unit Essential Question</u>: How do the patterns formed by the physical components of matter allow us to predict properties and draw conclusions about interactions?

Concept: Atoms and Subatomic	Concept: Arrangement of the	Concept: Sources of Properties of
Particles	Periodic Table	Compounds

Lagon Eccential Quantional	Lagon Econtial Questions	Laggon Eggential Questions
Lesson Essential Questions.	Lesson Essential Questions.	Lesson Essential Questions.
17 3-17 4	17 5	23 3 & 23 4
How is the number of each	How are elements grouped on the	How can we determine the types of
How is the number of each	now are elements grouped on the	How can we determine the types of
subatomic particle determined?	periodic table?	bonds present in a compound?
	18.1 & 18.4	Which properties can we predict
How did the model of the stom	How can the periodic table halp us	hasad on the types of honds in a
How did the model of the atom	How call the periodic table help us	based on the types of bolids in a
evolve over time?	draw models for atoms?	compound?

Vocabulary:	Vocabulary:	Vocabulary:
<u>Vocabulary:</u> element atom subatomic particle proton neutron electron	<u>Vocabulary:</u> metals nonmetals metalloids group period valence electron	<u>Vocabulary:</u> compound chemical bonds octet of electrons covalent bond ionic bond metallic bond
nucleus atomic number mass number isotope energy levels	ion	molecule ionic crystal

Unit Topic: Structure of Matter

Objectives:

In order to demonstrate one's competence in this area, the student will be able to:

Section 1: Atoms and Subatomic Particles

- 1. Define all vocabulary terms listed on the student learning map.
- 2. State the location, relative mass, charge, and importance of an electron, proton, and neutron.
- 3. Determine the number of protons, neutrons, and electrons in an atom, ion, or isotope.
- 4. Determine how the addition of certain subatomic particles would change an atom.
- 5. Write nuclear symbols and hyphenated notations for any atom, ion, or isotope.
- 6. Discuss the experimental evidence that led to each atomic model.

SectiOon 2: Arrangement of the Periodic Table

- 1. Define all vocabulary terms listed on the student learning map.
- 2. Draw a Bohr model of any of the first 18 elements.
- 3. Identify the number of valence electrons based on a Bohr model or location on the periodic table.
- 4. Draw a Lewis dot structure for any main group element.
- 5. Predict the common charge of an ion based on a Bohr model, Lewis dot structure or location on the periodic table.
- 6. Predict the properties of main group elements based on their location on the periodic table.

Section 3: Sources of Properties of Compounds

- 1. Define all vocabulary terms listed on the student learning map.
- 2. Determine the type of bond formed between 2 elements based on the location of elements on the periodic table.
- 3. Use Lewis dot structures to represent ionic and covalent compounds.
- 4. Predict general properties of compounds based on the type of bond.

15

Subatomic particle	Charge (+, -, 0)	Locatio (in nucleus or nucleus	n outside	Relative mass (0, 1)		Si	gnificance		
proton									
neutron									
electron									
1. What do isotopes	have in cor	nmon?							
		&			&				
2. What 2 things are	different b	etween isotopes?				&			
3. If you know the a	tomic numł	per, what, if anyt	hing, coul	d you corre	ectly predic	ct?			&
4. If you know the n	umber of p	rotons. what, if a	nvthing, c	ould vou c	orrectly pr	edict?			
&	F		,8,-	j	, L-				
5. The number of		+			equ	als the mass	s number of	an atom	
Complete each statemer	nt by circlin	ig the correct cho	oice.						
6. In the nuclear syn	nbol, the ma	ass number is the	e (top / bo	ttom) num	ıber				
7. In the nuclear syn	nbol, the ato	omic number is t	he (top / t	oottom) nu	mber.				
8. The number of pr	otons is equ	al to the (mass	(atomic)	number.					
9. The number of (r	neutrons / el	ectrons) is equa	l to the ma	ass number	minus the	protons.			
10. In a neutral aton	n, the numb	er of electrons is	equal to the	he number	of (protor	ns / neutrons).		
11. The hyphenated	notation is	the element's na	me follow	ed by a das	sh and the	(mass / ator	nic) number	r.	
Complete the tehle	for the me	utual atama							
by phonest	red notation		Complete	e nuclear	atomic	mass	# of	# of	# of
12			sym	ıbol	number	number	protons	neutrons	electrons
12			76	Os					
13									
							34	33	
14		22							
indit	ım — 1	22							

38

78

1. Identify the atomic model by name and describe the scientific evidence that was used to develop it.

- 2. Lightly shade the 8 metalloids
- 3. Circle the symbols of the 16 nonmetals
- 4. Place an x in the box of the 11 gases
- 5. Write the **common charges** of ions on the line **above** each main group (1,2,13,14,15,16,17,18)
- 6. Write the number of valence electrons on the line below each main group (1,2,13,14,15,16,17,18)

																-	18
H	2											13	14	15	16	17	He
Li	Be											B	C	N	0	F	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	Cl	Ar
Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															
Answ	er the o	questic	ons rel	ated to	the pe	eriodic	table:	:									
7. A h	orizont	al row o	on the	periodi	c table	is calle	ed a										
8. A ve	ertical o	column	on the	period	lic table	e is cal	led a _										
9. On the modern periodic table elements are listed by and grouped								rouped									
by																	
10. Ciı	10. Circle the correct word: Most elements are (metals / nonmetals / metalloids)																

- 11. Circle the correct word: Most are most elements (solids / liquids / gases)
- 12. Circle the correct word: Most nonmetals are (solids / liquids / gases)

1. Identify 2 general properties for each group listed:

a. Group 1	
b. Group 2 _	
c. Group 17	
d. Group 18	

For 2-4 Draw a Bohr model for each element and write the number of valence electrons (ve-) it has next to its name

2. silicon ve- =	3. magnesium	ve-=	4. sulfur ve- $=$
	<u>-</u>		

For 5-7 Draw Lewis dot structures for the following elements and write the number of valence electrons (ve-) it has next to its name

5.	potassium(K)	ve- =	6. bromine(Br)	ve-=	7. bismuth(Bi) ve- =
----	--------------	-------	----------------	------	----------------------

For 8-13 Write the charge the ion of each element would have:

8. Ga 11. Cs

9. Cl 12. P

10. I 13. Ba

Page 3

1. Complete the table. There may be ions

hyphenated notation	Complete nuclear	atomic	mass	# of	# of	# of
	symbol	number	number	protons	neutrons	electrons
	$^{15}_{8}$ O ⁻²					
	0					
				32	33	28
sodium – 23 ion						
ion		35	78			

2. Write the nuclear symbol for an atom of fluorine – 19 if a proton were added to it. _____

3. Write the nuclear symbol for an atom of fluorine – 19 if an electron were added to it.

4. Write the nuclear symbol for an atom of fluorine – 19 if a neutron were added to it.

5. Complete the table

Elements in bond	Location on periodic table	Type of bond
metal		
metal		
nonmetal		
metal		
nonmetal		
nonmetal		

6. Determine the type of bond that would form between the elements

magnesium and fluorine	S and N
oxygen and sodium	P and K
carbon and sulfur	Cl and Na
copper and nickel	Zn and Sn

Page 4

1. Determine whether the compound formed between the 2 elements would be soluble in water or and whether it would have a high or low boiling point

Elements in bond	Soluble in water? (Y or N)	High or low melting point?
Cu & Zn		
Br & Rb		
O & P		

Draw Lewis dot structures to show the bond between the elements.

2. Mg & S

3. F & Cl

4. Ba & I

5. N & F

Define the terms in your own words

- element atom subatomic particle
- proton
- neutron
- electron
- nucleus
- atomic number
- mass number
- isotope
- energy levels
- metals
- nonmetals
- metalloids
- group
- period
- valence electron
- compound
- chemical bond
- octet of electrons
- covalent bond
- ionic bond
- metallic bond
- molecule
- ionic crystal